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Abstract

In this paper, the effects of dispersion in material properties on free vibration response of composite plates with

geometric nonlinearity in von-Karman sense are investigated. The higher order shear deformation theory is employed for

the study reported here. An efficient C0 finite element formulation is developed for the analysis. Using Monte Carlo

simulation, the second order statistics i.e., mean and standard deviation of the nonlinear free vibration response of the

composite laminates are obtained for different thickness and amplitude ratios. The input statistics (mean and variance) of

the material property are assumed to be known as a priori. The computed results demonstrate the influence of the

variations in the material properties and amplitudes on the nonlinear free vibration response of the composite plates. The

results are compared with those available in the literature.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the conventional structural analysis, the material properties like elastic modulus, Poisson’s ratio, density
etc. of the fiber reinforced composite laminates, are usually assumed to be deterministic quantities. Due to
inherent uncertainties involved at different levels in fabrication and manufacturing processes exact values of
these properties cannot be achieved and thus, these become random in nature. Because of the randomness in
material properties, the mass and stiffness matrices of the composite plates become stochastic in nature. The
uncertainties in the specification of mass and stiffness matrices may induce statistical variation in the
eigenvalues and eigenvectors and consequently the dynamic response may be affected. Therefore a realistic
analysis of composite laminated plates requires the uncertainties arising from the randomness in the material
properties to be taken into account properly.

The studies in the area of stochastic analysis include the topics considering the influence of the spatial
randomness of the material properties and geometrical parameters on the structural response variability [1–6]
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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of the conventional materials. Literature available for analysis of composite structures with random
material properties is limited. Spanos and Zeldin [7] presented a numerical method based on Galerkin
approximation for solving stochastic mechanics problems by representing the solution using a small number
of random parameters. Wang [8] investigated the effect of random initial geometric imperfections on the
vibration behavior of rectangular plates where random initial geometric imperfections of plates were described
by Gaussian random fields. A Monte Carlo analysis for simply supported plates is carried out in detail
to illustrate the performance of the proposed approach. Shinozuka and Lenoe [9] proposed a probabilistic
model that can be used for digital–analytical simulation of non-homogenous properties of materials. The
developed model was compatible with the finite element method and thus extremely useful for the analysis
and design of non-homogeneous structural systems. Singh et al. [10] employed a first order perturbation
technique in combination with higher order shear deformation theory (HSDT) including rotary inertia
effects to obtain the second order statistics of the natural frequencies of laminated composite plates with
random material properties. Raj et al. [11] studied response of composite plates with random material
properties using FEM and Monte Carlo simulation. They used HSDT [12] for the analysis. Onkar and Yadav
[13] proposed a formulation based on the classical laminate theory and von-Karman nonlinear
strain–displacement relation to obtain the second order response statistics of laminated plates by employing
perturbation technique.

It is well known that for the deterministic analysis of moderately thick and very thick laminated plates, the
use of higher order shear deformation theories is very important. Many researchers [14–18] studied nonlinear
vibrations of laminated plates using first order and higher shear deformation theories based on the
deterministic assumptions of the system properties. But studies to deal with uncertainties in the material
properties using stochastic finite element method based on the HSDT are rather limited in literature. Within
the framework of stochastic finite element method, the application of Monte Carlo simulation is quite
popular. The MCS possesses the major advantage that accurate solutions can be obtained for any problem
whose deterministic solution is known either numerically or analytically, since it statistically converges to the
correct solution when a sufficiently large number of simulations are performed.

Keeping all these in mind, the present investigation aims at predicting the second order statistics of the
nonlinear free vibration response of the laminated composite plates with random material properties. The
proposed formulation is based on the HSDT [12] and von-Karman nonlinear strain displacement relation
[19]. An efficient C0 finite element formulation is developed. Finally, Monte Carlo simulation is carried
out to obtain the second order statistics of nonlinear free vibration response of the laminated composite plate.
The results are compared with those available in the literature to show the performance of the present
formulation.

2. Formulation

Consider a rectangular laminated plate of length a, width b, and thickness h, which consists of N plies
located in a three-dimensional Cartesian coordinate system (x, y, z), where the x–y plane passes through the
middle of the plate thickness with its origin placed at the corner of the plate as shown in Fig. 1.

2.1. Displacement field

In the present study, the assumed displacement field is based on the higher order shear deformation theory
[12] which requires C1 continuous element for finite element approximation. In order to avoid the usual
difficulties associated with these elements, the displacement model has been slightly modified to make it
suitable for C0 continuous element [20]. The modified displacement field may be expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ f 1ðzÞcxðx; y; tÞ þ f 2ðzÞfxðx; y; tÞ

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ f 1ðzÞcyðx; y; tÞ þ f 2ðzÞfyðx; y; tÞ

wðx; y; z; tÞ ¼ w0ðx; y; tÞ (1)
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Fig. 1. Plate geometry and coordinate system.
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where, u, v, and w represents the displacement of a point along the x-, y-, and z-axes respectively; u0, v0, and w0

represents corresponding displacements of a point at the mid-plane, fx ¼ @w0=@x and fy ¼ @w0=@y, cx and cy

are the rotations of the normal to mid-plane about y- and x-axis, respectively; f1(z) and f2(z) may be given as
f1(z) ¼ C1z�C2z

3, f2(z) ¼ �C4z
3, with C1 ¼ 1, C2 ¼ C4 ¼ 4/(3h2) in which h is the total thickness of the

laminate.
2.2. Stress– strain relation

The stress–strain relations for a k-th lamina oriented at an arbitrary angle with respect to the reference axis
for an orthotropic layer is given by

fsgk ¼ ½Q�kf�gk or

sxx
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txy
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txz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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gxz
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k

(2)

where ½Q�k, fsgk and f�gk are the transformed stiffness matrix, stress and strain vectors for the k-th lamina,
respectively [21].
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2.3. Strain displacement relation

The strain in the von-Karman sense is expressed as [22]

f�g ¼ f�Lg þ f�NLg (3)

where f�Lg and f�NLg are linear and nonlinear strain vector, respectively.
Strain vectors corresponding to the displacement field as given in Eq. (1) may be expressed as follows:
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9>=
>; ¼

�0xx
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where

�0xx

�0yy

g0xy

8>><
>>:

9>>=
>>; ¼

@u0

@x
þ

1

2

@w0

@x

� �2

@v0

@y
þ

1

2

@w0

@y

� �2

@u0

@y
þ
@v0

@x
þ
@w0

@x

@w0

@y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
;

�1xx

�1yy

g1xy

8>><
>>:

9>>=
>>; ¼ C1

@cx

@x
@cy

@y

@cx

@y
þ
@cy

@x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; (5,6)

�3xx

�3yy

g3xy

8>><
>>:

9>>=
>>; ¼ �C2

@cx

@x
@cy

@y

@cx

@y
þ
@cy

@x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
� C4

@fx

@x
@fy

@y

@fx

@y
þ
@fy

@x

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
; (7)

g0yz

g0xz

( )
¼ C1

cy

cx

( )
þ

fy

fx

( )
;

g2yz

g2xz

( )
¼ �3C2

cy

cx

( )
� 3C4

fy

fx

( )
. (8,9)

The displacement vector {d} for the present model is expressed as

fdg ¼ fu0; v0;w0;fy;fx;cy;cxg
T (10)
2.4. Finite element modeling

A nine noded isoparametric element is employed for finite element discretization of the laminate. The
displacement vector and the element geometry are represented as

d ¼
XNN

i¼1

Nidi; x ¼
XNN

i¼1

Nixi; y ¼
XNN

i¼1

Niyi (11)

where Ni is the interpolation function for the i-th node, di is the vector of unknown displacements for the i-th
node, NN is the number of nodes per element and xi and yi are Cartesian coordinate of the i-th node.

The mid-plane strain vector may expressed as

f�0g ¼ f�0Lg þ f�
0
NLg ¼ ð½BL� þ ½BNL�Þfdge (12)

where fdge is the nodal displacement vector, [BL] and [BNL] are linear and nonlinear strain displacement
matrices, respectively.
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2.5. Potential energy and kinetic energy

The elemental potential energy of the plate with large deflection can be written as

Ue ¼
1

2

Z Z XN

i¼1

Z zk

zk�1

f�gT½Qk�f�gdz

" #
dx dy (13)

With the help of Eqs. (12) and (13), above equation may be expressed as

Ue ¼
1

2

Z Z XN

i¼1

Z zk

zk�1

fdgeT½B�T½D�½B�fdge dz

" #
dx dy (14)

where ½B� ¼ ½BL� þ ½BNL� is strain displacement matrix for large deformation of plates and [D] is defined as

½D� ¼

½A� ½B� ½E� 0 0

½B� ½D1� ½F1� 0 0

½E� ½F 1� ½H� 0 0

0 0 0 ½A2� ½D2�

0 0 0 ½D2� ½F2�

2
6666664

3
7777775

(15)

with the elements of plate stiffness matrices are defined as

ðA1ij ;Bij ;D1ij ;E1ij ;F1ij ;HijÞ ¼
XN

k¼1

Z zk

zk�1

½Qij �kð1; z; z
2; z3; z4; z6Þ dz; for i; j ¼ 1; 2 and 6;

ðA2ij ;D2ij ;F2ijÞ ¼
XN

k¼1

Z zk

zk�1

½Qij�kð1; z
2; z4Þ dz; for i; j ¼ 4 and 5. (16)

The elemental kinetic energy (Te) of the vibrating laminated plate can be expressed as

Te ¼
1

2

Z Z XN

k¼1

Z zk

zk�1

rkf
_f gTk f

_f gk dz

" #
dx dy (17)

where rk and f _f gk ¼ f _u
k _vk _wkgT are the mass density and the velocity vector of the k-th layer of the plate,

respectively. The dot represents differentiation of displacement field with respect to time ‘t’. The above
equation may further be expressed using Eq. (11) as

Te ¼
1

2

Z Z XN

k¼1

Z zk

zk�1

½½N�f_dge�Trk½½N�f
_dge� dx dy dz ¼

1

2

Z Z
f_dgeT½m�ef_dgedx dy (18)

where [m]e is called inertia matrix of element, [N] is shape function matrix.
After evaluating the elemental potential energy (Ue) and kinetic energy (Te) of all elements in the finite element

mesh, they are assembled to get the total potential energy (U) and kinetic energy (T) of the whole laminate.

2.6. Equation of motion

The governing equation is derived using principle of virtual displacements, dynamic version of the principle
of virtual work

0 ¼

Z t

0

ðdU � dTÞ dt (19)

Putting the expressions of potential and kinetic energy in Eq. (19), the equation of motion of the plate is
obtained as follows:

½M�f€dg þ ½KT �fdg ¼ 0 (20)
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where [M] and [KT] are consistent mass matrix and total tangential stiffness matrix, respectively. It is noted
that the tangential stiffness matrix [KT] depends on the displacements. The expressions of [M] and [KT] are
given as

½M� ¼

Z Z
½N�T½m�e½N� dx dy; ½KT � ¼ ½KL� þ ½KNL� þ ½Ks� (21)

where [KL] and [KNL] are linear and nonlinear stiffness matrices, respectively, and [Ks] is the geometric stiffness
matrix.

Eq. (20) may further be written assuming fdg ¼ fd0ge�iot as

½KT � � o2½M� ¼ 0. (22)

This is the standard eigenvalue problem for solving free vibration problem.

2.7. Solution technique for solving nonlinear eigenvalue problem

The finite element model is a system of algebraic equations among the nodal values of primary variables
(generalized displacements) and secondary variables (generalized forces). The coefficients of these algebraic
equations contain integrals of the physical parameters (e.g., material properties) and functions used for the
approximation of the primary variables. The integral expression is, in general, complicated algebraically due
to spatial variation of the parameters or coordinate transformations. Therefore, a numerical integration
method, the Gauss quadrature, is used to evaluate them. The nonlinear eigenvalue problem is solved
employing an iterative procedure as highlighted below.

The iteration starts from a corresponding normalized initial mode shape obtained from linear analysis,
putting [KNL] ¼ 0 and [Ks] ¼ 0, with amplitude scaled up by the desired value. This initial mode shape is used
for evaluating the nonlinear stiffness matrix [KNL] and geometric stiffness matrix [Ks]. Then an eigenvalue and
associated eigenvector are obtained using standard eigenvalue extraction algorithm. This eigenvalue is again
normalized and scaled up for updating the nonlinear stiffness matrix and iteration continues until the
frequency evaluated from the subsequent two iterations is within the tolerance limit of 0.001%.

2.8. Solution approach for nonlinear free vibration: Monte Carlo simulation technique

The tangential stiffness matrices [KT] involves the material properties EL, ET, GLT, GTZ, nLT, nTZ out
of which four material properties namely EL, ET, GLT and nLT are treated as independent random variables.
The second order statistics of the non-dimensional free vibration fundamental frequency is obtained by Monte
Carlo simulation approach. A set of input sample of random numbers is generated by MATLAB software
having given size, mean, and standard deviation assuming Gaussian distributions of the properties. The
samples are checked for shift from the target mean value and standard deviation.

The formula for Mean and standard deviation (SD) of property x to be varied are as

Mean : m ¼
Pn

i¼1xi

n
(23)

Standard deviation ðSDÞ : s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � xÞ2

ðn� 1Þ

s
(24)

where i ¼ 1,2,3,y, n, with n ¼ total no. of random numbers.

3. Results and discussion

The finite element formulation developed in previous section based on Monte Carlo simulation is used to
obtain the mean and standard deviation of the fundamental frequency for the composite plate with random
material properties. The effect of dispersion in material property along with variation in aspect ratio
and oscillation amplitude on the frequency statistics is studied. The approach is validated with those results
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available in literature. The second order statistics of the nonlinear fundamental frequency has been obtained
for a rectangular square laminated plate with all edges simply supported cross-ply and angle ply laminates.
The examples considered here assume the plate to be undergoing large amplitude vibrations. A computer
program is developed in MATLAB to compute nonlinear fundamental frequency for validation of results and
variation in fundamental frequency of free vibration due to variation in material properties. This program
estimates the expected value and standard deviation of the nonlinear fundamental frequency by Monte Carlo
simulation technique.

Boundary condition: Boundary condition considered is of simply supported (SS-2) type, i.e. all edges
movable in their normal direction.

at x ¼ 0 and a; v ¼ 0; w ¼ 0; fy ¼ 0; cx ¼ 0,

at y ¼ 0 and b; u ¼ 0; w ¼ 0; fx ¼ 0; cy ¼ 0.

The fundamental frequency is non-dimensionalized as, $ ¼ oða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
, while the standard deviation is

normalized with the corresponding mean value.
3.1. Convergence and validation study: mean and standard deviation

Problem of an antisymmetric angle-ply [301/�301/301/�301/301/�301] square plate with all four edges
simply supported is considered. All of the laminae are assumed to be of the same thickness and made of the
same orthotropic material. The mean values of the elastic properties are, EL/ET ¼ 40, GLT/ET ¼ GTZ/
ET ¼ 0.6, nLT ¼ nTZ ¼ 0.25, ET ¼ 10.23GNm�2, r ¼ 1630 kgm�3. The non-dimensional linear fundamental
frequencies of the plate with various mesh sizes have been obtained for the laminated composite plate with
a/h ¼ 100 and are presented in Table 1 which shows that there is very small change in non-dimensional
fundamental frequency $ for increasing mesh from 7� 7 to 8� 8. Hence, it may be concluded that for mesh
7� 7 the value of normalized fundamental frequency $ becomes stable. In Table 1, the linear frequency is also
compared with those of Reddy [22]. The agreement between the two results is excellent.

Now, a symmetric square cross-ply [01/901/901/01] laminated plate with simply supported edges is studied.
The mean values of elastic properties of lamina are EL/ET ¼ 40.0, GLT/ET ¼ GLZ/ET ¼ 0.6, GTZ/ET ¼ 0.5,
nLT ¼ nTZ ¼ 0.25, ET ¼ 10.3GNm�2, r ¼ 1522 kgm�3. For normalized nonlinear fundamental frequency
ratio the 7� 7 mesh size is found to be adequate in modeling the full laminated plate, based on the progressive
mesh refinement. The ratio of SD and mean of the natural frequency ratio, oNL/oL is obtained by allowing
composite material properties (EL, ET, GLT, and nLT) to vary simultaneously with the SD/mean ¼ 5%. The
elastic properties of composite lamina are modeled as the basic random variables. Convergence for random
numbers to be generated for various elastic composite material properties has been shown with the help of plot
SD/mean of the nonlinear frequency ratio (oNL/oL) versus random numbers in Fig. 2. It can be observed
from the figure that the curve of the SD/mean of oNL/oL versus number of random numbers generated
becomes nearly straight line at value 9000 along x-axis. So, it is understood that 9000 random values of the
Table 1

Non-dimensional fundamental frequency $ ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
.

Stacking sequence [30/�30/

30/�30/30/�30]

antisymmetric

Mesh size Non-dimensional fundamental frequency, $ ¼ ðoa2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
r=ET

p
Present study Reddy [22], exact

a/h ¼ 100 4� 4 18.2541 18.1567

5� 5 18.1743

6� 6 18.1603

7� 7 18.1598

8� 8 18.1591
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elastic material properties are to be generated for the satisfactory convergence of the nonlinear response of the
composite plate.

The results from present formulation are now compared with those from Singh et al. [10] and Onkar and
Yadav [13]. The variation in frequencies for linear strain displacement relation is obtained by putting
[KNL] ¼ 0, in the present nonlinear formulation for simultaneous change in all basic material properties. These
linear results for thickness ratio b/h ¼ 10, are presented with those of Singh et al. [10] and Onkar and Yadav
[13] in Fig. 3. The figure shows good agreement between the results. On the other hand, for nonlinear free
vibration analysis with random material properties the results are compared only with the results given by
Onkar and Yadav [13], who obtained the results based on exact analysis for nonlinear free vibration using
CLT and ignoring in-plane inertias. Table 2 presents a comparison of the non-dimensional mean frequency
with results given by Onkar and Yadav [13] for the plate with a/b ¼ 2. The present results obtained using
MCS with nonlinear formulation are placed in the table for comparison. A reasonable good agreement
between the two is observed. The effect of nonlinearity is apparent with different values of the amplitudes.
The difference in the results demonstrates the importance of MCS technique in the probabilistic analysis. The
difference in the results is due to use of CLT by Onkar and Yadav [13] and HSDT by the present formulation
besides the different solution approaches closed form and MCS.
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Table 2

Non-dimensional fundamental frequency ratio, oNL=oL for simultaneous variation in all properties.

SD/mean, material properties References SD/mean, oNL=oL

w/h ¼ 0.3 w/h ¼ 0.6 w/h ¼ 0.9

0.050 Present 0.050 0.057 0.059

Onkar and Yadav [13] 0.048 0.054 0.058

0.100 Present 0.101 0.109 0.117

Onkar and Yadav [13] 0.097 0.107 0.115

0.150 Present 0.148 0.163 0.176

Onkar and Yadav [13] 0.146 0.160 0.172

0.200 Present 0.198 0.216 0.231

Onkar and Yadav [13] 0.194 0.213 0.229

Table 3

Non-dimensional fundamental frequency ratio, oNL=oL for different b/h ratios and amplitude ratios (w/h).

b/h w/h Non-dimensional fundamental

frequency ratio, oNL=oL

oL

50 0.2 1.0021 22.179

0.4 1.0098

0.6 1.0189

0.8 1.0923

1.0 1.1201

100 0.2 1.0056 22.739

0.4 1.0278

0.6 1.0639

0.8 1.1185

1.0 1.1700
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Fig. 4. Effect of the amplitude ratio (w/h) on non-dimensional frequency ratio, oNL/oL.
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3.2. Numerical results: mean and standard deviation

The vibration of an angle-ply [451/–451/451/–451/451] laminated plate is taken up for consideration here.
The mean values of the elastic properties of lamina are, EL/ET ¼ 15.4, GLT/ET ¼ GTZ/ET ¼ 0.79,
nLT ¼ nTZ ¼ 0.30, ET ¼ 5.171GNm�2, r ¼ 1630 kgm�3. The non-dimensional mean fundamental nonlinear
frequency ratio (oNL/oL) for plate considered with all edges simply supported (SS-2, type) are presented in
Table 3 for b/h ¼ 100, and 50. The four material properties, which are considered as random variables for the
present analysis are ET, EL, GLT, and nLT. Fig. 4 shows influence of amplitude ratio (w/h) on non-dimensional
mean fundamental frequency ratio (oNL/oL) assuming SD/mean of material properties to be 5%. It can be
observed from the figure that the mean frequency ratio increases with the increase in amplitude of vibration.

Influence of scattering in the material properties on the mean frequency ratio is obtained by allowing the
ratio of standard deviation to mean to vary from 0% to 20% [23] with a sample size of 9000. In the first set
of studies, dispersion of one random variable is assessed, while all other random variables are kept constant at
0.00
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

S
D

/m
ea

n,
 ω

N
L/

 ω
L

:w/h = 0.2 
:w/h = 0.4 
:w/h = 0.6 

b/h = 50
b/h = 100 

SD/mean, EL

0.02 0.04 0.06 0.08 0.10 0.12

Fig. 5. Influence of the variation in EL on the non-dimensional frequency ratio of an angle-ply laminate (451/–451/451/–451/451) with

a/b ¼ 1 for b/h ¼ 50 and b/h ¼ 100.

0.00
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

S
D

/m
ea

n,
 ω

N
L/

 ω
L

:w/h = 0.2 
:w/h = 0.4 
:w/h = 0.6 

b/h = 50
b/h = 100 

0.05 0.10 0.15 0.20 0.25
SD/mean, ET

Fig. 6. Influence of the variation in ET on the non-dimensional frequency ratio of an angle-ply laminate (451/–451/451/–451/451) with

a/b ¼ 1 for b/h ¼ 50 and b/h ¼ 100.



ARTICLE IN PRESS
B.N. Singh et al. / Journal of Sound and Vibration 324 (2009) 126–138136
their mean values. The geometric parameter thickness ratio (b/h) is varied. The variation of non-dimensional
frequency with dispersion in all basic material properties changing simultaneously are presented subsequently
for square symmetric five-layered angle ply laminate for b/h ¼ 50 and 100.

Figs. 5–8 show effect of individual variation in the material properties EL, ET, GLT and nLT on the non-
dimensional fundamental frequency ratio for different b/h ratios. In addition, the effect of simultaneous
variations in all the properties, i.e., EL, ET, GLT, and nLT on non-dimensional fundamental frequency ratio are
demonstrated in Fig. 9 in which the plot of SD/mean oNL/oL versus SD/mean of material properties are
presented for different b/h ratios and amplitude ratios (w/h). The plate shows linear variation in nonlinear
fundamental frequency to linear frequency ratio within studied range, as a result of individual as well
as simultaneous variations in EL, ET, GLT and nLT, for all amplitude ratios (w/h). The influence of SD of
frequency shows different sensitivity at different amplitudes, at higher amplitude the variation is more than at
lower amplitude, i.e, at higher amplitude the plate shows higher sensitivity to change in the material
properties. The SD/mean of frequency is more for b/h ¼ 50, than for b/h ¼ 100, for the same plate. The effect
of the individual variation in EL is the highest on the non-dimensional fundamental frequency ratio of the
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plate for both the b/h ratios. It is noted that the plate is less sensitive to the variation in ET, in comparison to
variation in EL and it is less sensitive to the variation in GLT, in comparison to variations in EL and ET. It can
also be noted that the plate is least sensitive to the variation in nLT, in comparison to the variations in EL, ET,
and GLT.

Finally, the influence of amplitude on variation in frequency has been investigated for b/h ¼ 100 when all
material properties assumed to vary simultaneously. The same has been presented in Fig. 10. It is found that
the increase in the frequency scatter with increase in the amplitude is slightly nonlinear for the range
considered for the study. It shows a rising tendency of the scatter in oNL/oL with the variations in the material
properties.
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Fig. 9. Influence of scattering in all material properties varying simultaneously on the non-dimensional frequency ratio of an angle-ply

laminate (451/–451/451/–451/451) with a/b ¼ 1 for b/h ¼ 50 and b/h ¼ 100.
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4. Conclusions

An approach is presented for the nonlinear free vibration analysis of composite plate with random material
properties in the framework of the HSDT with nonlinear strain–displacement relations (von-Karman type),
using finite element method. The following conclusions are drawn from the presented results.
1.
 The standard deviation in frequency shows different sensitivity to different material properties.

2.
 The sensitivity changes with the change in thickness of laminate and oscillation amplitude.

3.
 The standard deviation in frequency shows linear variation with change in standard deviation in the

material properties.

4.
 Variation in EL has dominant effect on the scattering of frequency as compared to other properties.

5.
 Plate with lower b/h ratio shows higher scattering in the frequency response.

6.
 At higher amplitudes the plate shows higher sensitivity than at lower amplitude.
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